9,807 research outputs found

    Ionizing radiation exposure of LDEF

    Get PDF
    The Long Duration Exposure Facility (LDEF) was launched into orbit by the Space Shuttle 'Challenger' mission 41C on 6 April 1984 and was deployed on 8 April 1984. The original altitude of the circular orbit was 258.5 nautical miles (479 km) with the orbital inclination being 28.5 degrees. The 21,500 lb NASA Langley Research Center satellite, having dimensions of some 30x14 ft was one of the largest payloads ever deployed by the Space Shuttle. LDEF carried 57 major experiments and remained in orbit five years and nine months (completing 32,422 orbits). It was retrieved by the Shuttle 'Columbia' on January 11, 1990. By that time, the LDEF orbit had decayed to the altitude of 175 nm (324 km). The experiments were mounted around the periphery of the LDEF on 86 trays and involved the representation of more than 200 investigators, 33 private companies, 21 universities, seven NASA centers, nine Department of Defense laboratories and eight foreign countries. The experiments covered a wide range of disciplines including basic science, electronics, optics, materials, structures, power and propulsion. The data contained in the LDEF mission represents an invaluable asset and one which is not likely to be duplicated in the foreseeable future. The data and the subsequent knowledge which will evolve from the analysis of the LDEF experiments will have a very important bearing on the design and construction of the Space Station Freedom and indeed on other long-term, near-earth orbital space missions. A list of the LDEF experiments according to experiment category and sponsor is given, as well as a list of experiments containing radiation detectors on LDEF including the LDEF experiment number, the title of the experiment, the principal investigator, and the type of radiation detectors carried by the specific experiment

    Neutrino mass and magnetic moment in supersymmetry without R-parity in the light of recent data

    Get PDF
    We consider the generation of neutrino Majorana mass and transition magnetic moment by the lepton-number violating λ\lambda and/or λ\lambda' couplings in R-parity-violating supersymmetric models. We update (and improve) the existing upper limits on the relevant couplings using the most recent data on neutrino masses and mixings, indicating also the possible improvement by the GENIUS project. We study the implication of this update on the induced neutrino magnetic moment.Comment: 7 pages, Latex, uses axodraw.sty; refs updated, to appear in PL

    Re-assigning (1x2) reconstruction of rutile TiO_2(110) from DFT+U calculations

    Full text link
    Physically reasonable electronic structures of reconstructed rutile TiO_2(110)-(1x2) surfaces were studied using density functional theory (DFT) supplemented with Hubbard U on-site Coulomb repulsion acting on the d electrons, so called as the DFT+U approach. Two leading reconstruction models proposed by Onishi--Iwasawa and Park et al. were compared in terms of their thermodynamic stabilities.Comment: 4 pages, 4 figures, 2 table

    Identification of the dominant precession damping mechanism in Fe, Co, and Ni by first-principles calculations

    Full text link
    The Landau-Lifshitz equation reliably describes magnetization dynamics using a phenomenological treatment of damping. This paper presents first-principles calculations of the damping parameters for Fe, Co, and Ni that quantitatively agree with existing ferromagnetic resonance measurements. This agreement establishes the dominant damping mechanism for these systems and takes a significant step toward predicting and tailoring the damping constants of new materials.Comment: 4 pages, 1 figur

    Nonlocal feedback in ferromagnetic resonance

    Full text link
    Ferromagnetic resonance in thin films is analyzed under the influence of spatiotemporal feedback effects. The equation of motion for the magnetization dynamics is nonlocal in both space and time and includes isotropic, anisotropic and dipolar energy contributions as well as the conserved Gilbert- and the non-conserved Bloch-damping. We derive an analytical expression for the peak-to-peak linewidth. It consists of four separate parts originated by Gilbert damping, Bloch-damping, a mixed Gilbert-Bloch component and a contribution arising from retardation. In an intermediate frequency regime the results are comparable with the commonly used Landau-Lifshitz-Gilbert theory combined with two-magnon processes. Retardation effects together with Gilbert damping lead to a linewidth the frequency dependence of which becomes strongly nonlinear. The relevance and the applicability of our approach to ferromagnetic resonance experiments is discussed.Comment: 22 pages, 9 figure

    Electric dipole moments of nitric acid-water complexes measured by cluster beam deflection

    Full text link
    Water clusters embedding a nitric acid molecule HNO3(H2O)_{n=1-10} are investigated via electrostatic deflection of a molecular beam. We observe large paraelectric susceptibilities that greatly exceed the electronic polarizability, revealing the contribution of permanent dipole moments. The moments derived from the data are also significantly higher than those of pure water clusters. An enhancement in the susceptibility for n=5,6 and a rise in cluster abundances setting in at n=6 suggest that dissociation of the solvated acid molecule into ions takes place in this size range.Comment: Proceedings of ISACC 2009, The Fourth International Symposium "Atomic Cluster Collisions: structure and dynamics from the nuclear to the biological scale" (AIP Conference Proceedings

    Mass and width of the sigma

    Full text link
    I report on recent work done in collaboration with Irinel Caprini and Gilberto Colangelo. We observe that the Roy equations lead to a representation of the pion pion scattering amplitude that exclusively involves observable quantities, but is valid for complex values of s. At low energies, this representation is dominated by the contributions from the two subtraction constants, which are known to remarkable precision from the low energy theorems of chiral perturbation theory. Evaluating the remaining contributions on the basis of the available data, we demonstrate that the lowest resonance carries the quantum numbers of the vacuum and occurs in the vicinity of the threshold. Although the uncertainties in the data are substantial, the pole position can be calculated quite accurately, because it occurs in the region where the amplitude is dominated by the subtractions. The calculation neatly illustrates the fact that the dynamics of the Goldstone bosons is governed by the symmetries of QCD.Comment: Contribution to the proceedings of MESON 2006 (Krakow

    Low relaxation rate in a low-Z alloy of iron

    Full text link
    The longest relaxation time and sharpest frequency content in ferromagnetic precession is determined by the intrinsic (Gilbert) relaxation rate \emph{GG}. For many years, pure iron (Fe) has had the lowest known value of G=57 MhzG=\textrm{57 Mhz} for all pure ferromagnetic metals or binary alloys. We show that an epitaxial iron alloy with vanadium (V) possesses values of GG which are significantly reduced, to 35±\pm5 Mhz at 27% V. The result can be understood as the role of spin-orbit coupling in generating relaxation, reduced through the atomic number ZZ.Comment: 14 pages, 4 figure
    corecore